

Chapter 6 Review

1. $\int \frac{3}{x^{2}-4 x-5} d x$

$$
3=A(x+1)+B(x-5)
$$

2. $\int e^{2 x} \cos x d x$

$$
=\frac{e^{2 x} \sin x}{5}+\frac{2}{5} e^{2 x} \cos x+c
$$

3.

$\int 8 \cos ^{4} x d x$
4. $\int \cos ^{3} x d x$

$\cos x\left(1-\sin ^{2} x\right) d x$
5. $\quad \int \ln x d x=x \ln x-x+C$
6. $\int x \sec ^{2} x d x \quad \times \tan x+\ln |\cos x|$
$-C$
13. $\int 5^{x} d x$

$$
\frac{d y}{y}=x d x \quad C e^{\frac{x^{2}}{2}}=y \quad 2 e^{\frac{x^{2}}{2}}=y
$$

11. $\frac{d y}{d x}=y x$ and $\mathrm{y}=2$ when $\mathrm{x}=0$
12. $\frac{d y}{d x}=\frac{-x}{y+1}$ and $\mathrm{y}=-3$ when $\mathrm{x}=0$

$$
\begin{aligned}
(y+1) d y & =-x d x \quad \frac{y^{2}}{2}+y=-\frac{x^{2}}{2}+\frac{3}{2} \\
y^{2}+y & =-\frac{x^{2}}{2}+C
\end{aligned}
$$

10. $\frac{d x}{d t}=.001 x(100-x)$ with $x(0)=10$

$$
x=\frac{100}{1+9 e^{-6001)(100) t}}=\frac{100}{1+4_{i}^{-i t}}
$$

$$
=5^{x}
$$

$$
5^{x}
$$

$$
+C
$$

$$
\ln 5
$$

7. $\int \frac{3 x}{4 x^{2}+1} d x \quad \frac{3}{8} \ln \left|4 x^{2}+1\right|+C$

$$
\begin{aligned}
& u=4 x^{2}+1 \\
& d u=8 x d x
\end{aligned}
$$

8. $\int x^{3} \ln x d x=\frac{x^{4}}{4} \ln x-\frac{x^{4}}{16}+C$
9. $\int \frac{3 x^{2}}{\sqrt{x^{3}+1}} d x=\int u^{-\frac{1}{2}} d u$

$$
\begin{aligned}
u=x^{3}+1 \\
22^{2}
\end{aligned} \quad=2\left(x^{3}+1\right)^{\frac{1}{2}}+C
$$

14. Use Euler's method:

$$
\frac{d y}{d x}=2 x+y \text { if } f(0)=0 \text { find } f(1) \text { using } d x=.2
$$

$$
(0,0) \quad(.6, .256)
$$

$$
(.2,0)
$$

$$
(.4, .08)
$$

15. $\int \frac{4 x+41}{x^{2}+3 x-10} d x=$

$$
4 x+41=\frac{A}{x-2}+\frac{B}{x+5}
$$

$$
4 x+41=A(x+5)+B(x-2)
$$

$$
4 x+41=(A+B) x+5 A-2 B
$$

1. 1974 AB 7 No Calculator

The rate of change in the number of bacteria in a culture is proportional to the number present. In a certain laboratory experiment, a culture had 10,000 bacteria initially, 20,000 bacteria at time t 1 minutes, and 100,000 bacteria at $(\mathrm{t} 1+10)$ minutes.
(a) In terms of t only, find the number of bacteria in the culture at any time t minutes, $t>0$.
(b) How many bacteria were there after 20 minutes?
(c) How many minutes had elapsed when the 20,000 bacteria were observed?

2. The rate at which a rumor spreads through a high school of 2000 students can be modeled by the differential equation $\frac{d P}{d t}=0.003 P(2000-P)$, where P is the number of students who have heard the rumor t hours after 9AM.
(a) How many students have heard the rumor when it is spreading the fastest? Justify your answer.
(b) If $P(0)=5$, solve for P as a function of t.

$\frac{2000-5}{5}$
(c) Use your answer to (b) and your graphing calculator to determine how many hours have passed when half the student body has heard the rumor.

3. Given the differential equation $\frac{d y}{d x}=x+y$. Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(4)=-1$. Use Euler's method, starting at $x=4$ with two steps of equal size, to approximate $f(4.2)$. Show the work that leads to your answer.

4. The population $P(t)$ of a species satisfies the logistic differential equation $\frac{d P}{d t}=P\left(2-\frac{P}{5000}\right)$, where the initial population is $P(0)=3000$ and t is the time in years. What is $\lim _{t \rightarrow \infty} P(t)$?
(A) 2500
(B) 3000
(C) 4200
(D) 5000
(E) 10,000

