Warm-Up

 $\underline{\mathrm{Ex}}$ (a) Find the third-degree Maclaurin polynomial for $f(x) = e^x$

(b) Use your answer to (a) to find: $\lim_{x \to 0} \frac{f(x) - 1}{2x}$

Feb 24-7:47 AM

9.3 Taylor Series with Remainder

What is the 5th order Maclaurin series for $f(x) = \sin x$ What is the maximum error when approximating $\sin x$ on $[-\pi,\pi]$

Solve Graphically and Numerically:

How many terms are needed in the Maclaurin series for $\sin x$
in order to approximate $\sin x$ within .0001 on $[-\pi,\pi]$

Feb 27-10:16 AM

On what interval, does the 3rd order Maclaurin series
approximate $\sin x$ within .01?
Feb 27-10:19 AM

Taylor's Remainder Estimation Theorem

with an nth order polynomial

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... + \frac{f^n(a)}{n!}(x-a)^n$$

Error
$$\leq \left| M \frac{\left(x-a\right)^{n+1}}{\left(n+1\right)!} \right|$$

M is the max value of $f^{n+1}(x)$ on the interval

Feb 27-10:20 AM

The approximation $ln(1+x) \approx x - \frac{x^2}{2}$ is used when x is small.

Use the Remainder Estimation Theorem to get a bound for the maximum error when $|x| \le .01$ Support your answer graphically.

Give an error bound when e^x is approximated by the 4th degree polynomial about x = 0 for $x \le .5$

Feb 27-7:47 AM

What values of x may be used in $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ to approximate $\cos x$ with an error no greater than 5×10^{-4}