8.3 Relative Rates of Growth

Definitions: Faster, Slower, Same-rate Growth

if
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \qquad 0 < L < \infty$$

Feb 6-10:34 AM

Which function grows faster?

$$e^x$$
 x^2

$$\ln x \quad x \quad x^2$$

Show the functions grow at the same rate:

$$x$$
, $x + \sin x$

$$\log_a x$$
, $\log_b x$

Feb 6-10:37 AM

Transitivity of Growing Rates:

Show the functions grow at the same rate by comparing both with x $\sqrt{x^2+5} \qquad \left(2\sqrt{x}-1\right)^2$