
5.5 Trapezoidal Rule

Approximate the area under the curve $y = x^2$ from 1 to 2 using trapezoids.

Nov 25-10:32 PM

Trapezoid Rule:

general rule:

$$T = \frac{h}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n)$$

average of LRAM and RRAM

$$LRAM = h(y_0 + y_1 + y_2 + ... + y_{n-1})$$

$$RRAM = h(y_1 + y_2 + ... + y_{n-1} + y_n)$$

$$T = \frac{L+R}{2}$$

Concavity in estimates:

Nov 13-2:06 PM

Estimate
$$\int_{1}^{2} \frac{1}{x} dx$$
 with 10 trapezoids

how to use calculator

over or under estimate?

Calculate the area of $\int_{2}^{4} 2x^{2} dx$ using 4 trapezoids

Would you expect this to be an over or under estimate?

Nov 13-2:09 PM

An observer measures the outside temperature every hour from noon until midnight, recording the temperature in the following table:

time	noon	1	2	3	4	5	6	7	8	9	10	11	mid
temp	63	65	66	68	70	69	68	68	65	64	62	58	55

What was the average temperature for the 12-hour period?

Error Bound for the Trapezoid rule:

$$|E| \le \frac{b-a}{12} h^2 M_{f''}$$
 is the max value of f''

Estimate the error in approximating $\int_{1}^{2} \frac{1}{x} dx$ with 10 trapezoids.

Nov 13-2:00 PM