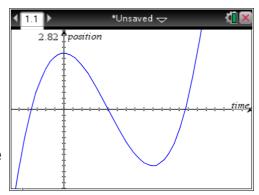
Warm-Up

Let
$$h(x) = f(x) \cdot g(x)$$
 and $j(x) = \frac{f(x)}{g(x)}$

Fill in the missing entries in the table below using the information about *f* and *g* given in the table below.


X	f(x)	f'(x)	g(x)	g'(x)	h'(x)	j'(x)
-2	1	-1	-3	4		
-1	0	-2	1	1		
0		2	-2	1	4	
1	2		-1	2		-2
2	3	-1		-2		1

Sep 20-7:20 AM

3.4a Position, Velocity, Acceleration

How is the position of the particle related to the graph?

How is the velocity of the particle related to the graph?

Position		
Velocity Speed		
Acceleration		
Displacement		

Sep 20-7:20 AM

At time t = 0, a diver jumps from a platform diving board that is 32 ft. above the water. The position equation is:

$$s(t) = -16t^2 + 16t + 32$$

What is the displacement in the first 2 secs?

Average velocity in the first 2 secs?

What is the velocity at 2 secs?

What is the acceleration at 2 secs?

The position of a particle that is moving in a straight line is given by the equation $s = t^3 - 6t^2 + 9t$ where t is measured in seconds and s in meters.

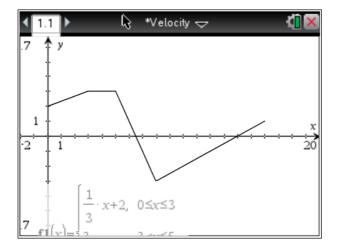
- (a) Find the velocity at time t.
- (b) What is the velocity at 2s? At 4s?
- (c) When is the particle at rest?
- (d) When is the particle moving forward (that is, in the positive direction)?

Sep 20-7:28 AM

- (e) Describe the motion of the particle.
- (f) Find the displacement of the particle during the first 5 sec.
- (g) Find the total distance traveled by the particle in the first 5 sec.
- (h) Find the acceleration at time *t* and at 4s.
- $0 \le t \le 5$ (i) Graph the position, velocity, and acceleration functions for

Ex 4 p130

A dynamite blast propels a heavy rock straight up with a launch velocity of 160 ft/ sec. It reaches a height of $s(t) = 160t - 16t^2$ after t seconds.


Find

- a) max height
- b) velocity and speed when height=256
- c) acceleration
- d) When the rock hits the ground

Sep 20-7:35 AM

Position from Velocity

A particle moves along a horizontal line. The graphs shows its velocity. Describe the motion of the particle.

