3.2 Differentiability - can you find the derivative?

A function will not have a derivative at a point (a, f(a)) if the slopes of the secant lines fail to approach a limit as x approaches a.

Let's investigate several functions

(using differentiability)

corner
$$y = |x| + 3$$

cusp
$$y = x^{\frac{2}{3}}$$

vertical tangent
$$y = \sqrt[3]{x}$$

discontinuity
$$y = \begin{cases} 1, x > 0 \\ -1, x < 0 \end{cases}$$

Sep 12-11:24 AM

Local Linearity

A good way to think of differentiable functions is that they are locally linear.

Use Local_Linearity.tns to explore and write a definition of "locally linear"

Derivatives on your calculator:	
numeric: numerical derivative	
symbolic (CAS)	

Sep 12-7:17 PM

Differentiability implies continuity

is the converse true?