\qquad

1. If $x>0, y \geq 0$, each of the following MUST be a real number EXCEPT:
A. $x y$
B. $|x y|$
C. $\frac{y}{x}$
D. $\frac{x}{y}$
E. $\sqrt{x y}$
2. If x and y are rational, $x \neq 0, y \neq 0$, each of the following is a rational number EXCEPT:
F. $x+y$
G. $x y$
H. $x-y$
J. $\frac{x}{y}$
K. $\sqrt{x y}$
3. The product of two irrational numbers is always:
A. irrational
B. rational
C. positive
D. negative
E. none of the above
4. For the complex number i such that $i^{2}=-1$, what is the value of $i^{4}+2 i^{2}$?
A. -2
B. -1
C. 0
J. 1
K. 2
5. In the complex numbers, where $i^{2}=-1, \frac{1}{1+i} \cdot \frac{1-i}{1-i}=$?
A. $\mathrm{i}-1$
B. $\mathrm{i}+1$
C. $1-\mathrm{i}$
D. $\frac{1-i}{2}$
E. $\frac{1+i}{2}$
6. What is the y-intercept of the line $3 x-3 y=5$?
A. $\frac{5}{3}$
B. $\frac{3}{5}$
C. $-\frac{5}{3}$
D. $-\frac{3}{5}$
E. 1
7. What is the slope of $\overline{A B}$?
F. 0
G. 6
H. -6
J. $\frac{1}{6}$
K. $-\frac{1}{6}$

8. Which of the lines shown below has a negative slope?
A. I only
B. II only
C. I \& II only
D. II \& III only
E. I, II, \& III

9. Which of the following is the equation of the line below?
F. $y=\frac{4}{3} x-3$
G. $y=\frac{3}{4} x+3$
H. $y=-\frac{3}{4} x+3$
J. $y=\frac{3}{4} x-3$
K. $y=-\frac{3}{4} x-3$

\qquad
10. Which of the these points lies on the line $y=-2 x+5$?
A. $(2,1)$
B. $(2,-1)$
C. $(2,9)$
D. $(2,-9)$
E. $(2,10)$
11. Which of these is parallel to the line $x-2 y=4$ and passes through the point $(-4,-1)$?
F. $x-2 y=2$
G. $2 y-x=2$
H. $x-2 y=7$
J. $2 y-x=7$
K. $2 x-y=4$
12. Which of the following has a y-intercept of 2 and passes through the point $(1,-3)$?
A. $y=\frac{2}{3} x+2$
B. $y=\frac{-2}{3} x+2$
C. $y=5 x+2$
D. $y=-5 x+2$
E. $y=6 x+2$
13. What is the equation of the line passing through $(-1,3)$ with a slope of zero?
A. $x=3$
B. $y=3$
C. $x=3 y$
D. $y=3 x$
E. $y=3 x-1$
14. If the line, $y=2 x-1$, is moved 2 units to the left, what is the equation of the new line?
F. $y=2 x+3$
G. $y=2 x-2$
H. $y=2 x+1$
J. $y=2 x+2$
K. $y=2 x$
15. Which of the following is the graph of $y=-3 x+9$?
F.

J.

G.

K.

H.

16. If k is any real number, the equation, $\mathrm{y}=\mathrm{kx}-2$, will represent all lines with:
A. a slope of -2
B. a slope of 2
C. a y-intercept of -2
D. a y-intercept of 2
E. all of the above
17. $(2 \sqrt{12})(\sqrt{24})=$?
A. $8 \sqrt{6}$
B. $12 \sqrt{2}$
C. $12 \sqrt{3}$
D. $12 \sqrt{6}$
E. $24 \sqrt{2}$
\qquad
18. $3^{4} 3^{-9}=$?
F. 3^{5}
G. 3^{13}
H. 3^{-5}
J. 3^{-13}
K. 3^{-36}
19. $\sqrt{2+6 \cdot 8}=$?
A. $2 \sqrt{5}$
B. $5 \sqrt{2}$
C. $2 \sqrt{15}$
D. $4 \sqrt{15}$
E. $15 \sqrt{2}$
20. If $x=2 \sqrt{2}, 2 x^{2}-3 x+2=$?
F. $18-6 \sqrt{2}$
G. $30-6 \sqrt{2}$
H. $34-6 \sqrt{2}$
J. $62-6 \sqrt{2}$
K. $66-6 \sqrt{2}$
21. $(\sqrt{2}+2 \sqrt{5})(2 \sqrt{2}-3 \sqrt{5})=$
A. -142
B. -26
C. $-142+\sqrt{10}$
D. $-26+\sqrt{10}$
E. 0
22. $3 \sqrt{20}+2 \sqrt{45}=$
F. $5 \sqrt{65}$
G. $2 \sqrt{5}$
H. $6 \sqrt{5}$
J. $12 \sqrt{5}$
K. $12 \sqrt{10}$
23. $\sqrt{7+\sqrt{x}}=2+\sqrt{3}$
A. 48
B. 32
C. 24
D. 16
E. 12
24. $(3 \sqrt{3}-2 \sqrt{5})(3 \sqrt{3}+2 \sqrt{5})=$
F. 7
G. 47
H. $7+12 \sqrt{15}$
J. $47+12 \sqrt{15}$
K. $7-12 \sqrt{15}$
25. If $a \neq 0, \frac{a^{\frac{1}{2}}}{a^{\frac{1}{3}}}=$
A. $a^{\frac{3}{2}}$
B. $a^{\frac{1}{6}}$
C. $a^{\frac{2}{3}}$
D. $a^{\frac{5}{6}}$
E. a^{6}
26. $16^{\frac{-3}{4}}+8^{\frac{2}{3}}=$
F. 32
G. 12
H. $4 \frac{1}{8}$
J. 4
K. $-6 \frac{2}{3}$
\qquad
27. For $x>0, y>0$ then $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}=$
A. $\frac{x+y}{x-y}$
B. $\frac{x-y}{x+y}$
C. -1
D. $\frac{x-2 \sqrt{x y}+y}{x-y}$
E. $\frac{x+2 \sqrt{x y}+y}{x+y}$
28. There are 8 blocks in a box. Each one has a different number on it from 1 to 8 . If two blocks are drawn from the box, which of the following CANNOT be the sum?
A. 2
B. 5
C. 10
D. 12
E. 15
29. To have flyers printed, costs $\$ 50$ for the first 100 and $\$ 10$ for each additional 100. How many can be printed for $\$ 100$?
F. 500
G. 600
H. 700
J. 800
K. 900
30. If the ruler below is marked in inches, what is the length of the nail to the nearest inch?
A. 7
B. 6
C. 5
D. 4
E. 3
31. Two buildings appear to be the same height. One is 50 feet tall. If the other is 5 times as far away, how tall is it?
F. 10 feet
G. 50 feet
H. 100 feet
J. 250 feet
K. 2500 feet
32. If a car gets 33 miles per gallon of gasoline and gasoline costs $\$ 1.08$ per gallon, what would it cost to go 300 miles?
A. $\$ 8.73$
B. $\$ 9.82$
C. $\$ 11.21$
D. $\$ 35.64$
E. $\$ 106.92$
33. Which of the following is equivalent to 15.5×10^{-4} ?
F. . 0000155
G. . 000155
H. . 00155
J. 155,000
K. 1,550,000
34. Points X, Y, and Z , are on the same line in that order. If the distance from X to Z is 8.32×10^{6} and the distance from Y to Z is 25.3×10^{3}, how far is it from X to Y ?
A. $5,790,000$
B. $8,067,000$
C. $8,294,700$
D. $8,345,300$
E. $8,573,000$
35. The sun is about $150,000,000 \mathrm{~km}$ away. Light travels about $300,000 \mathrm{~km}$ per second. About how many seconds does it take for sunlight to reach earth?
F. 5.0×10^{-1}
G. 5.0×10^{0}
H. 5.0×10^{1}
J. 5.0×10^{2}
K. 5.0×10^{3}
\qquad
36. What is the total cost of 3.5 pounds of peaches at 86 cents per pound and 4.5 pounds of pears at 68 cents per pound?
A. $\$ 3.01$
B. $\$ 3.06$
C. $\quad \$ 6.01$
D. $\$ 6.07$
E. $\quad \$ 7.60$
37. Bob is buying a car for $\$ 6300$. He gets a trade-in allowance of $\$ 1250$ for his old car, but has to pay $\$ 480$ for sales tax and license. How much does he need to borrow to cover the balance?
F. $\$ 4570$
G. $\quad \$ 5530$
H. $\quad \$ 6830$
J. $\quad \$ 7070$
K. $\$ 8030$
38. $\frac{\left(7.5 \times 10^{6}\right)\left(2 \times 10^{2}\right)}{\left(3 \times 10^{4}\right)\left(2.5 \times 10^{9}\right)}$
A. $\quad 3.5 \times 10^{-4}$
B. $\quad 3.0 \times 10^{5}$
C. $\quad 2.0 \times 10^{-4}$
D. 2.0×10^{-5}
E. $\quad 2.0 \times 10^{5}$
39. If $x \neq 0, z \neq 0$, simplify $\frac{32 x^{5} y^{4} z^{8}}{-16 x^{3} z^{2}}$.
A. $\quad 16 x^{2} y^{4} z^{6}$
B. $\quad 16 x^{2} y^{4} z^{4}$
C. $\quad 2 x^{2} y^{4} z^{6}$
D. $\quad-2 x^{2} y^{4} z^{4}$
E. $\quad-2 x^{2} y^{4} z^{6}$
40. For which nonnegative value of x is $\frac{1}{9-x^{2}}$ undefined?
F. 61
G. $\quad 18$
H. 9
J. 3
K. 0
41. $\frac{2 x}{x^{2}-2 x-3}$ is defined except for which 2 values of x ?
A. -2 and -3
B. -1 and 3
C. 0 and -2
D. $\quad 0$ and 2
E. 1 and -3
42. Which is simplified form of $\frac{4}{x}+\frac{6 x+2}{x^{2}}$
F. $\frac{6(x+1)}{x}$
G. $\frac{6(x+1)}{x^{2}}$
H. $\quad \frac{6 x+6}{x^{3}}$
J. $\frac{10 x+2}{x^{2}}$
K. $\frac{12}{x}$
43. Which is a simplified version equivalent to $\frac{3+6 x}{9 x}$?
A. $\frac{2 x+1}{3 x}$
B. $\frac{1+6 x}{3 x}$
C. 1
D. 2
E. $\frac{7}{3}$
44. For all x in its domain, $\frac{x+1}{x^{3}-x}$ is equivalent to:
F. $\quad \frac{1}{x^{2}}-\frac{1}{x^{3}}$
G. $\frac{1}{x^{3}}-\frac{1}{x}$
H. $\frac{1}{x^{2}-1}$
J. $\frac{1}{x^{2}-x}$
K. $\frac{1}{x^{3}}$
\qquad
45. For all positive integers x, y, and $\mathrm{z}, \frac{x}{y}$ is equivalent to:
A. $\frac{x z}{y z}$
B. $\frac{x x}{y y}$
C. $\quad \frac{y x}{x y}$
D. $\frac{x-z}{y-z}$
E. $\frac{x+z}{y+z}$
46. For all $x>3, \frac{3 x-x^{2}}{x^{2}+3 x-18}=$
A. $\frac{-x}{x+6}$
B. $\frac{x}{x-6}$
C. $\frac{1}{x+6}$
D. $-\frac{1}{18}$
E. $\frac{1}{18}$
47. For all nonzero r, t, and z values, $\frac{16 r^{3} t z^{5}}{-4 r t^{3} z^{2}}$
F. $\quad-\frac{4 z^{3}}{r^{2} t^{2}}$
G. $\quad-\frac{4 r^{2} z^{3}}{t^{2}}$
H. $\quad-\frac{4 r z}{t}$
J. $\quad-4 r^{4} t^{4} z^{7}$
K. $\quad-4 r^{2} t^{2} z^{3}$
48. For all nonzero a and $\mathrm{b}, \frac{\left(10 a^{2} b^{2}\right)\left(-9 a^{2} b^{3}\right)}{6 a^{2} b^{4}}=$
A. $-15 b$
B. $-15 a^{2} b$
C. $\quad-15 a^{2} b^{2}$
D. $\frac{a^{2} b^{2}}{15}$
E. $\frac{12}{15}$
49. ABC is a right triangle. If $\mathrm{BC}=9$ and $\mathrm{AB}=12$, then $\mathrm{AC}=$?
A. $\quad 9 \sqrt{7}$
B. $\quad 3 \sqrt{7}$
C. 15
D. 63
E. 225

50. $\quad \mathrm{ABC}$ is a right triangle. $\mathrm{AB}=30, \mathrm{BC}=18$, and $\mathrm{AD}=5 . \mathrm{DC}=$?
F. $\quad 19$
G. 20
H. 21
J. 24
K. 29

51. In the right triangle below, find the length of x in terms of y.
A. $3+2 y$
B. $3-2 y$
C. $2 \mathrm{y}-3$
D. $\sqrt{9+4 y^{2}}$
E. $\sqrt{9-4 y^{2}}$

52. In trapezoid ABCD below, $m \angle A=m \angle D=90^{\circ}$. If $\mathrm{BC}=26, \mathrm{DC}=36, \mathrm{AB}=46$, then $\mathrm{AD}=$?
F. $\quad 2 \sqrt{194}$
G. $\quad 4 \sqrt{194}$
H. 22
J. 23
K. 24

\qquad
53. In the figure below, the angles are all right angles as marked. $A B=24, B C=19, C D=12$, and $\mathrm{DE}=4 . \mathrm{AE}=$?
A. 31
B. 33
C. $\quad 37$
D. 39
E. 41

54. In trapezoid RSTU, RS $=18, \mathrm{RU}=12, m \angle S=m \angle T=90^{\circ}$, and $m \angle U=60^{\circ}$. What is the perimeter of the trapezoid?
F. 6
G. $\quad 6 \sqrt{3}$
H. 54
J. $\quad 54+6 \sqrt{3}$

K. $\quad 54+12 \sqrt{3}$
55. $\Delta \mathrm{ABC}$ is equilateral. If altitude $\mathrm{CD}=9$, then $\mathrm{AC}=$?
A. $6 \sqrt{3}$
B. $3 \sqrt{3}$
C. $\quad \sqrt{3}$
D. 9
E. 4.5

56. A 16-foot ladder is leaning against a house. The top of the ladder is about 15 feet above the ground. The base of the ladder is about how far from the house?
F. 4 feet 8 inches
G. 5 feet 2 inches
H. $\quad 5$ feet 7 inches
J. 6 feet 3 inches
K. 6 feet 9 inches
57. Below is an isosceles right triangle. If $\mathrm{AB}=8, \mathrm{x}=$?
A. 8
B. 4
C. $\quad 4 \sqrt{2}$
D. $2 \sqrt{2}$
E. $\quad 8 \sqrt{2}$

58. Evaluate $2 x^{2}-2 x-5$ when $\mathrm{x}=-3$.
A. 7
B. 18
C. 19
D. 25
E. 37
59. If $\mathrm{a}=-1$ and $\mathrm{b}=2$, then $2 a^{3}+3 a^{2} b-a b^{2}-3 b=$?
F. 0
G. $\quad-10$
H. -12
J. 12
K. 2
60. Find the value of $2-\left(2 a^{2}+3 a b\right)$ when $\mathrm{a}=-2$ and $\mathrm{b}=1$?
A. -20
B. -12
C. -8
D. 4
E. 0
61. For all $\mathrm{x}, \mathrm{x}(2 \mathrm{x}-3)-2(5-\mathrm{x})=$?
F. $\quad 2 x^{2}-5 x-10$
G. $\quad 2 x^{2}-x-10$
H. $\quad 2 x^{2}+x-13$
J. $2 x^{2}-x-13$
K. $2 x^{2}-5 x-13$
62. For all x and all $\mathrm{N},\left(4 x^{2}+3\right)-\left(x^{2}+N x-3\right)=$?
A. $\quad 3 x^{2}+N x$
B. $\quad 3 x^{2}-N x$
C. $\quad 3 x^{2}-N x+6$
D. $\quad 3 x^{2}+N x+6$
E. $\quad 3 x^{2}-N x-6$

Name: \qquad

1. For all $x<0, y>0,(2 x+y)(3 x)-4 x y=$?
F. $\quad 6 x^{2}-x y$
G. $\quad 6 x^{2}-7 x y$
H. $\quad 6 x^{2}+7 x y$
J. $\quad 6 x^{2}+3 y^{2}-4 x y$
K. $6 x^{2}+3 x y^{2}-4 x y$
2. For variables a and $\mathrm{b}, x=2 a^{2}, y=-2 a^{2}-3 b$. Which of the following represents the product of $x y$?
A. $4 a^{4}-6 a^{2} b$
B. $-4 a^{4}-6 a^{2} b$
C. $-4 a^{4}+6 a^{2} b$
D. $-2 a^{4}-6 a^{2} b$
E. $-2 a 2-6 a^{2} b$
3. Which of the following is a factor of $3 x^{2}+x-24$?
F. $x-3$
G. $\quad x-6$
H. $3 x-6$
J. $\quad 3 \mathrm{x}-8$
K. $3 x-2$
4. If $x>0, y \leq 0, y^{2}-x^{2}$?
A. $(x-y)(x+y)$
B. $(y-x)(y+x)$
C. $\quad(x-y)(x-y)$
D. $(y-x)(y-x)$
E. $y-x$
5. What is the greatest common factor of $12 x^{3} y$ and $8 x^{2} y^{2} ?$
F. $\quad 2 x^{2}$
G. $\quad 4 x^{2}$
H. $\quad 4 x^{2} y$
J. $\quad 4 x^{2} y^{2}$
K. $\quad 4 x^{3} y^{2}$
6. Which is the complete factorization of $6 x^{3} y^{2}+15 x^{2} y^{2}-36 x y^{2}$
A. $\quad 3 x y^{2}\left(2 x^{2}+5 x-12\right)$
B. $3 x y^{2}\left(2 x^{2}-5 x+12\right)$
C. $\quad 3 x y^{2}(2 x-4)(x+3)$
D. $\quad 3 x y^{2}(2 x+4)(x-3)$
E. $\quad 3 x y^{2}(2 x-3)(x+4)$
7. For all $\mathrm{x},(x-3)^{2}+(x+1)^{2}=$
F. $\quad 2 x^{2}+10$
G. $\quad 2 x^{2}-10$
J. $\quad 2 x^{2}+2 x+10$
K. $\quad 2 x^{2}-2 x+10$
L. $\quad 2 x^{2}-4 x+10$
8. If $x \neq 0, z \neq 0$, simplify $\frac{32 x^{5} y^{4} z^{8}}{-16 x^{3} z^{2}}$
A. $\quad 16 x^{2} y^{4} z^{6}$
B. $\quad-16 x^{2} y^{4} z^{4}$
C. $\quad 2 x^{2} y^{4} z^{6}$
D. $\quad-2 x^{2} y^{4} z^{4}$
E. $\quad-2 x^{2} y^{4} z^{6}$
9. A rectangle has a length of $(4 x-1)$ and a width of $(x+5)$. What is the area?
F. $\quad 5 x+4$
G. $\quad 10 \mathrm{x}+8$
H. $\quad 4 x^{2}-5$
J. $\quad 4 x^{2}+19 x-5$
K. $4 x^{2}+21 x-5$
