Alternating Series
An alternating series is a series whose terms are alternately positive and negative.  

Examples:  
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In general, just knowing that 
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 tells us very little about the convergence of the series 
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; however, it turns out that an alternating series must converge if the terms have a limit of 0 and the terms decrease in magnitude.
	Alternating Series Test
If  
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, then an alternating series  
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converges if both of the following conditions are satisfied:

1) 
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2) 
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 is a decreasing sequence; that is,  
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Note: This does not say that if 
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, the series diverges by the Alternating Series Test.  The Alternating
  Series Test can only be used to prove convergence.  If  
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, then the series diverges by the nth Term Test for Divergence, not by the Alternating Series Test.

Ex. Determine whether the following series converge or diverge.

(a) 
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(b) 
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	Alternating Series Remainder
Suppose a series has terms that are alternating, decreasing in magnitude, and having a limit of 0.  If the series has a sum  S, then  
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, where 
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 is the nth partial sum of the series.  

	In other words, if the three conditions are met, you can approximate the sum of the series by using the  nth partial sum, 
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, and your error will be bounded by the first truncated term, 
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Ex. Find a bound for the truncation error after 99 terms.
[image: image18.wmf](

)

(

)

1

1

1.1

nn

n

¥

+

=

-

å


Ex. Approximate the sum, S,  of the series 
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  by using its first four terms, and explain 

      why your estimate differs from the actual value by less than 
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  Then use your results to 

      find an interval in which  S must lie.
  
________________________________________________________________________
Definitions:
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 is absolutely convergent if 
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 converges.
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 is conditionally convergent if 
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converges but
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 diverges.

_______________________________________________________________________

Ex.  Determine whether the given alternating series converges or diverges.  If it converges, determine whether it is absolutely convergent or conditionally convergent.

(a) 
[image: image26.wmf](

)

1

1

n

n

n

¥

=

-

å


(b) 
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