Warm-Up

- (a) Find the Maclaurin polynomial of degree n = 5 for $f(x) = \sin x$
- The error is symbolized $|f(1.2) P_5(1.2)|$ (c) Find $P_5(2.1)$

What is the value of f(2.1) . 86 3 2 0 9

$$|f(2.1)-P_5(2.1)|=$$

How does the error for $P_5(2.1)$ compare to the error for $P_5(1.2)$

What do you think would happen if we used our polynomial to estimate sin 2.7?

9.4a Tests for Convergence of Series

Geometric Series Test

A geometric series is in the form $\sum_{n=0}^{\infty} a_i r^n$ or $\sum_{n=1}^{\infty} a_i r^{n-1}$, $a \neq 0$.

The geometric series **diverges** if $|r| \ge 1$

If
$$|r| < 1$$
, the series converges to the sum $S = \frac{a_1}{1 - r}$.

Determine if the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{3}{2^n} = 3(2^n) = 3(2^{-1})^n = \frac{1}{2} < |$$

$$3\left(\frac{1}{2}\right)^{5} = \frac{\frac{3}{2}}{1-\frac{1}{2}} = \frac{\frac{3}{2}}{\frac{1}{2}} = 3$$
 Converges $3\left(\frac{1}{2}\right)^{5}$

nth Term Test for Divergence

If
$$\lim_{n\to\infty} a_n \neq 0$$
, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

read note on notes page!! 🔏

Determine if the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{2n+3}{3n-5} \qquad \alpha_n \Rightarrow \frac{2}{3} \qquad \text{where }$$

$$a_n \rightarrow \frac{2}{3}$$

$$\sum_{n=1}^{\infty} \frac{n!}{2n! + 1} \qquad a_n \Rightarrow \frac{1}{2} \qquad \text{is any ess}$$

$$\sum_{n=1}^{\infty} \frac{3^n - 2^n}{3^n}$$

$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

d.
$$\sum_{n=1}^{\infty} \frac{1}{n^3+1} \quad \alpha_n > 0$$

Ratio Test

Let $\sum_{n=1}^{\infty} a_n$ be a series of nonzero terms and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

- 1) $\sum_{n=1}^{\infty} a_n$ converges if L< 1.
- 2) $\sum_{n=1}^{\infty} a_n$ diverges if L> 1.
- 3) If L = 1 the test is inconclusive.

