7.1 Integral as Net Change

The definite integral of a rate of change gives the net change.

displacement: final - initial

position:

$$y = y$$

total distance:

$$\int_{a}^{b} |v(t)| dt$$

$$\int_{a}^{c} v(t) dt + \int_{c}^{b} v(t) dt$$

The velocity of a particle moving along the x-axis is given by:

$$v(t) = t^2 - \frac{8}{(t+1)^2}$$
 $0 \le t \le 8$

a. describe the motion of the particle:

left $\begin{bmatrix} 0 \\ 1.254 \end{bmatrix}$ right $\begin{bmatrix} 1.254 \\ 1.254 \end{bmatrix}$ stopped $\begin{cases} 1.254 \\ 1.254 \end{cases}$

b. Initial position s(0) = 12what is the particle's position at t = 1? t = 3?

Position=
$$12 + \int_{0}^{3} t^{2} - \frac{8}{(t+1)^{2}} dt = 8.3$$

 $S(3) = 12 + \int_{0}^{3} v(t) dt = 15$

c. Find the total distance traveled from t = 0 to t = 3.

w| calc:
$$\int |v(t)| dt$$

by hand:
 $\int v(t) dt + \int v(t) dt$
 $\int v(t) dt$

Ex.

$$v(t) = 4\cos(2t)$$

$$0 \le t \le \frac{\pi}{2}$$

left right stopped

displacement

total distance traveled

Integral of a rate of change gives the total accumulation.

Potato Consumption -- From 1970 to 1980 the rate of potato consumption was $C(t) = 2.2 + 1.1^t$ millions of bushels per year, with t being years since the beginning of 1970. How many bushels were consumed from the beginning of 1972 to the end of 1973?

Potato Consumption: $C(t) = 5e^{\frac{t}{10}}$

in billions of bushels per year, t = years beginning in 1990

Find the potato consumption from the beginning of 1990 to the end of 1994.

A pump connected to a generator operates at a varying rate shown in the table. How many gallons were pumped during the hour?

Time (min)	Rate (gal/min)
0	58
5	60
10	65
15	64
20	58
25	57
30	55
35	55
40	59
45	60
50	60
55	63
60	63

Work done by a constant force: $W = F \cdot d$

Work done by a variable force: $W = \int_a^b F(x)dx$

Hooke's Law: F(x) = kx

It takes a force of 9 N to stretch a spring 3 cm. How much force does it take to stretch the spring to 5 cm? How much work is done in stretching the spring to 5 cm?