Warm-Up

Let $h(x) = f(x) \cdot g(x)$ and $j(x) = \frac{f(x)}{g(x)}$ Fill in the missing entries in the table below using the information about f and g given in the table below.

		4= f(1) + (-2/2)					<u>-2</u>	(2) - 8(1)
a- f	X	f(x)	f'(x)	g(x)	g'(x)	h'(x)	j'(x)	(-2)2
8= 1	-2	1	-1	-3	4	7	-10	-12
	-1	0	-2	1	1	-2	- 2	4
	0	8	2	-2	1	4	-3	
•	1	2		-1	2		-2	
	2	3	-1		-2		1	

3.3. 7. $y = x - 2x^{2} + x + 1$ $y' = 3x^{2} - 4x + 1 = 0$ (3x - 1)(x - 1) = 0 12. 14. 15. 16. 17. 18. 18. 19. 19. 19. 19. 19. 19. 19. 19
47.

4!
$$y = \frac{4x}{x^{2}+1}$$

$$x = 0$$

$$(0,0)$$

$$y' = \frac{(x^{2}+1)(4) - 4x(2x)}{(x^{2}+1)^{2}}$$

$$x = 0$$

$$(1,2)$$

$$x = 1$$

$$x = 0$$

$$(1,2)$$

$$x = 0$$

$$y = 4(x - 0) + 0$$

$$y = 0(x - 1) + 2$$

$$= 4x$$

$$y = 2$$

$$S = 4.9t^{2}$$

$$\frac{ds}{dt} = 9.8t$$

$$\frac{d^{2}s}{dt^{2}} = 9.8$$

14.
$$y = \frac{x^{2} + 3}{x} = \frac{x^{2} + 3}{x}$$

$$y' = \frac{x(2x) - (x^{2} + 3)(1)}{x^{2}}$$

$$y' = x + 3x^{-1}$$

$$x' = x + 3x^{-1}$$

$$x'$$

$$y = \frac{x^{2} + 5x - 1}{x^{2}}$$

$$x^{-2}(x^{2} + 5x - 1)$$
1. Quotient rule
2. product rule
3. $1 + 5x^{-1} - x^{-2}$

3.4a Position, Velocity, Acceleration

How is the position of the particle related to the graph?

(time, distance) & relate to t=0

How is the velocity of the particle related to the graph?

Slopes of the position graph

Position
$$S(t)$$
 $x(t)$

Velocity $S'(t)$

Speed $S'(t)$

Speed $S'(t)$

Velocity $S(t)$
 $S'(t)$

Acceleration $S''(t)$
 S'

At time t = 0, a diver jumps from a platform diving board that is 32 ft. above the water. The position equation is:

$$s(t) = -16t^2 + 16t + 32$$

What is the displacement in the first 2 secs?
$$S(2) - S(0) = -|b(2)|^2 + |b(2)| + |52| - |32|$$

$$= -32 + |52|$$

Average velocity in the first 2 secs?

What is the velocity at 2 secs?

What is the acceleration at 2 secs?

$$S''(t) = V'(t) = a(t) = -32 \frac{fl}{su^2}$$

The position of a particle that is moving in a straight line is given by the equation where t is measured in seconds and s in meters. $s = t^3 - 6t^2 + 9t$

- (a) Find the velocity at time t.
- (b) What is the velocity at 2s? At 4s?

(c) When is the particle at rest?
$$\sqrt{(t)} = 0$$

 $3t^2 - (2t+9) = 0$

(d) When is the particle moving forward (that is, in the positive direction)?

(f) Find the displacement of the particle during the first 5 sec.

- (g) Find the total distance traveled by the particle in the first 5 sec.
- (h) Find the acceleration at time t and at 4s.
- (i) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$